
Introduction to tidyverse packages
Jeff Oliver

2024-09-12

Make your life easier and your code faster with the suite of “tidyverse” packages, including
ggplot, tidyr, and dplyr.

Learning objectives

1. Manipulate data with group_by and summarize to extract information from datasets
2. Combine multiple commands with piping functionality
3. Create publication-quality data visualizations with ggplot

Data science: more fun, less pain

R is a powerful language for managing, analyzing, and visualizing complex data. However,
some of the commands in R are esoteric or just plain confusing. The tidyverse package for R
includes several helpful functions that make it easier to manipulate, summarize, and visualize
your data. In this lesson we’ll use these functions to create plots from summary statistics.

Getting started

First we need to setup our development environment. Open RStudio and create a new project
via:

• File > New Project…
• Select ‘New Directory’
• For the Project Type select ‘New Project’
• For Directory name, call it something like “r-tidyverse” (without the quotes)
• For the subdirectory, select somewhere you will remember (like “My Documents” or

“Desktop”)

1

https://www.tidyverse.org/

We are using the tidyverse package, which itself is really just a collection of six different
packages. However, we can install them all with one command:

install.packages("tidyverse")

Our ultimate goal is to use the pre-loaded iris data to create a plot of the data stored in that
data frame. The iris data were collected by botanist Edgar Anderson and used in the early
statistical work of R.A. Fisher.

We want to make a chart that looks like this:

Sepal.Length Sepal.Width

Petal.Length Petal.Width

setosa versicolor virginica setosa versicolor virginica

0.5

1.0

1.5

2.0

2.7

2.9

3.1

3.3

3.5

2

3

4

5

5.0

5.5

6.0

6.5

Species

Tr
ai

t m
ea

n
va

lu
es

We want to keep all of our work stored in an R script, so we open a new script and start with
an explanation of what we are going to do:

Plot iris trait measurements
Jeffrey C. Oliver
jcoliver@email.arizona.edu
2018-05-17

2

Summarizing the data

So what will we need? Break this down into the component parts.

• Means
• Standard errors
• For each species
• For each trait

The hard way

Let’s start with getting the means for a single column, Sepal.Length. If we do this in base R,
we need to pull out the values for each species, then calculate the means for each. This looks
something like this:

setosa_mean <- mean(iris$Sepal.Length[iris$Species == "setosa"])
versicolor_mean <- mean(iris$Sepal.Length[iris$Species == "versicolor"])
virginica_mean <- mean(iris$Sepal.Length[iris$Species == "virginica"])

Which is a little cumbersome, especially if we also need to do the additional step of putting
all these means into a single data frame.

Add these back into a data.frame
iris_means <- data.frame(Species = c("setosa", "versicolor", "virginica"),

SL_mean = c(setosa_mean, versicolor_mean, virginica_mean))

There’s a better way

A pair of commands can make this much easier: group_by and summarize. The first, group_by
imposes structure on our data; for our immediate purposes, we will use it to group the data
by the Species column:

Load the tidyverse packages
library("tidyverse")

Group the iris data by values in the Species column
iris_grouped <- group_by(iris, Species)

If we look at the first few rows of these data with the head command,

3

head(iris_grouped)

A tibble: 6 x 5
Groups: Species [1]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<dbl> <dbl> <dbl> <dbl> <fct>

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

it looks similar to the iris data we started with, but now, instead of a data.frame, this is
actually a tibble. We don’t need to worry much about that now, only to notice that Species
is listed as a group and that below the column names is an indication of the data types (there
are only numbers <dbl> and factors <fct>).

The second function we want to use is summarize, which does exactly that: it provides some
summary of the data we pass to it. Let’s get the mean value of sepal length for each species:

iris_means <- summarise(iris_grouped, SL_mean = mean(Sepal.Length))
iris_means

A tibble: 3 x 2
Species SL_mean
<fct> <dbl>

1 setosa 5.01
2 versicolor 5.94
3 virginica 6.59

Note that we did not have to tell summarize to calculate the mean for each species separately.
As part of the tidyverse package, summarize knows how to deal with grouped data.

These two functions made it easier, after all we went from this:

Calcuate the mean for each species
setosa_mean <- mean(iris$Sepal.Length[iris$Species == "setosa"])
versicolor_mean <- mean(iris$Sepal.Length[iris$Species == "versicolor"])
virginica_mean <- mean(iris$Sepal.Length[iris$Species == "virginica"])

4

Add these back into a data.frame
iris_means <- data.frame(Species = c("setosa", "versicolor", "virginica"),

SL_mean = c(setosa_mean, versicolor_mean, virginica_mean))

To this:

iris_grouped <- group_by(iris, Species)
iris_means <- summarise(iris_grouped, SL_mean = mean(Sepal.Length))

But there is another operator that can make our life even easier. If you are familiar with the
bash shell, you might be familiar with the pipe character, |, which is used to re-direct output.
A similar operator in R is %>% and is used to send whatever is on the left-side of the operator to
the first argument of the function on the right-side of the operator. So, these two statements
are effectively the same:

This:
iris %>% group_by(Species)
is the same as:
group_by(iris, Species)

But here comes the really cool part! We can chain these pipes together in a string of commands,
sending the output of one command directly to the next. So instead of the two-step process
we used to first group the data by species, then calculate the means, we can do it all at once
with pipes:

iris_means <- iris %>%
group_by(Species) %>%
summarize(SL_mean = mean(Sepal.Length))

Let’s break apart what we just did, line by line:

• iris_means <- iris %>% We did two things here. First, we instructed R to assign the
final output to the variable iris_means and we sent the iris data to whatever command
is coming on the next line.

• group_by(Species) This line is effectively the same as group_by(.data = iris,
Species), because we sent iris data to group_by through the pipe, %>%. We then
sent this grouped data to the next line.

• summarize(SL_mean = mean(Sepal.Length)) This used the grouped data from the pre-
ceding group_by command to calculate the mean values of sepal length for each species.

• The final output of summarize was then assigned to the variable iris_means.

5

Remember our plot:

Sepal.Length Sepal.Width

Petal.Length Petal.Width

setosa versicolor virginica setosa versicolor virginica

0.5

1.0

1.5

2.0

2.7

2.9

3.1

3.3

3.5

2

3

4

5

5.0

5.5

6.0

6.5

Species

Tr
ai

t m
ea

n
va

lu
es

Where are we with our necessary components?

• Means
• Standard errors
• For each species
• For each trait

Well, we have the means for each species, but we don’t have the standard errors and we only
have data for one trait (sepal length). Let’s start by calculating the standard error. Remember
the formula for the standard error is the standard deviation divided by the square root of the
sample size:

𝑆𝐸 = 𝜎√𝑛
Base R has the function sd which calculates the standard deviation, but we need another
function from tidyverse, n, which counts the number of observations in the current group. So
to caluclate the standard error, we can use sd(Sepal.Length)/sqrt(n()). But where? It
turns out that summarize is not restricted to a single calculation. That is, we can summarize
data in multiple ways with a single call to summarize. We can update our previous code to
include a column for standard errors in our output:

6

iris_means <- iris %>%
group_by(Species) %>%
summarize(SL_mean = mean(Sepal.Length),

SL_se = sd(Sepal.Length)/sqrt(n()))
iris_means

A tibble: 3 x 3
Species SL_mean SL_se
<fct> <dbl> <dbl>

1 setosa 5.01 0.0498
2 versicolor 5.94 0.0730
3 virginica 6.59 0.0899

Visualize!

At this point, we should go ahead and start trying to plot our data. Another part of the
tidyverse package is ggplot2, a great package for making high-quality visualizations. ggplot2
uses special syntax for making graphs. We start by telling R what we want to plot in the
graph:

ggplot(data = iris_means, mapping = aes(x = Species, y = SL_mean))

7

5.0

5.5

6.0

6.5

setosa versicolor virginica
Species

S
L_

m
ea

n

But our graph is empty! This is because we did not tell R how to plot the data. That is, do
we want a bar chart? A scatterplot? Maybe a heatmap? We are going to plot the means as
points, so we use geom_point(). Note also the specialized syntax where we add components
to our plot with the plus sign, “+”:

ggplot(data = iris_means, mapping = aes(x = Species, y = SL_mean)) +
geom_point()

8

5.0

5.5

6.0

6.5

setosa versicolor virginica
Species

S
L_

m
ea

n

Great! So now we also need to add those error bars. We’ll use another component,
geom_errorbar to do this.

ggplot(data = iris_means, mapping = aes(x = Species, y = SL_mean)) +
geom_point() +
geom_errorbar(mapping = aes(ymin = SL_mean - SL_se,

ymax = SL_mean + SL_se))

9

5.0

5.5

6.0

6.5

setosa versicolor virginica
Species

S
L_

m
ea

n

Note that for the error bars, the calculations for the positions of the bars (1 standard error
above and below the mean) are actually performed inside the ggplot command.

Those error bars are a little outrageous, so let’s make them narrower by setting the width
inside the call to geom_errorbar():

ggplot(data = iris_means, mapping = aes(x = Species, y = SL_mean)) +
geom_point() +
geom_errorbar(mapping = aes(ymin = SL_mean - SL_se,

ymax = SL_mean + SL_se),
width = 0.3)

10

5.0

5.5

6.0

6.5

setosa versicolor virginica
Species

S
L_

m
ea

n

Our plot looks good for now. Let’s move on to getting all our traits in a single graph.

An aside: narratives in data

All the data we deal with are, in some way, collected by humans. Even if data are collected with
data loggers or automated systems, humans were still involved in deciding how, where, and
when to collect those data. When we use data, we should consider rationale behind the people
who created the dataset. What was their motivation? What was the story they intended to
tell? We can ask this about the Iris flower data we are working on; use the resources you have
(in this case, a search engine in a web browser), to answer the following questions:

1. Who generated these data?
2. What were the data originally used for?
3. Have the data been used for other purposes?

You can read more about narratives in data science from the ADSA Data Science Ethos page
at https://ethos.academicdatascience.org/lenses/narratives/.

11

https://ethos.academicdatascience.org/lenses/narratives/

The long way

The iris data are organized like this:

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

But in order to capitalize on ggplot functionality, we need to reorganize the data so each row
only has data for a single trait, like this:

A tibble: 6 x 3
Species trait measurement
<fct> <chr> <dbl>

1 setosa Sepal.Length 5.1
2 setosa Sepal.Width 3.5
3 setosa Petal.Length 1.4
4 setosa Petal.Width 0.2
5 setosa Sepal.Length 4.9
6 setosa Sepal.Width 3

This is known as “long” format, where each row only has a single trait observation. To make
this data conversion, we use the the pivot_longer function:

iris_long <- pivot_longer(data = iris,
cols = -Species,
names_to = "trait",
values_to = "measurement")

The arguments we pass to pivot_longer are:

• data = iris this indicates iris is the data frame we want to transform
• cols = -Species tells pivot_longer not to treat the value in the Species column as

a separate variable
• names_to = "trait" trait is the column name for the variable names (e.g. “Sepal.Length”,

“Sepal.Width”, etc.)
• values_to = "measurement" measurement is the column name for the actual values

12

Let’s take this pivot_longer functionality and combine it with the group_by and summarize
commands we used previously. Recall our earlier code to generate species’ means and standard
errors:

iris_means <- iris %>%
group_by(Species) %>%
summarize(SL_mean = mean(Sepal.Length),

SL_se = sd(Sepal.Length)/sqrt(n()))

We’ll want to update this, inserting the pivot_longer function and updating the values used
for calculating the mean and standard deviation:

iris_means <- iris %>%
pivot_longer(cols = -Species,

names_to = "trait",
values_to = "measurement") %>%

group_by(Species, trait) %>%
summarize(trait_mean = mean(measurement),

trait_se = sd(measurement)/sqrt(n()))

Note the insertion of pivot_longer and the changes to group_by and summarize:

• group_by: We add an additional term, trait, to indicate to create another grouping,
based on each trait

• summarize: We replace SL_mean with trait_mean and SL_se with trait_se

Aside: You might see a warning that looks like

‘summarise()‘ has grouped output by ‘Species’. You can override using the ‘.groups‘
argument.

This is just telling us that the data are still considered to be grouped. For our purposes, this
will not affect anything downstream, so we won’t worry about it.

Our data frame now has a row for each species and each trait:

iris_means

A tibble: 12 x 4
Groups: Species, trait [12]

Species trait trait_mean trait_se
<fct> <chr> <dbl> <dbl>

1 setosa Petal.Length 1.46 0.0246

13

2 setosa Petal.Width 0.246 0.0149
3 setosa Sepal.Length 5.01 0.0498
4 setosa Sepal.Width 3.43 0.0536
5 versicolor Petal.Length 4.26 0.0665
6 versicolor Petal.Width 1.33 0.0280
7 versicolor Sepal.Length 5.94 0.0730
8 versicolor Sepal.Width 2.77 0.0444
9 virginica Petal.Length 5.55 0.0780

10 virginica Petal.Width 2.03 0.0388
11 virginica Sepal.Length 6.59 0.0899
12 virginica Sepal.Width 2.97 0.0456

Great! So now we need to use these summary statistics to create our plot. Recall the code we
used to plot the sepal lengths:

ggplot(data = iris_means, mapping = aes(x = Species, y = SL_mean)) +
geom_point() +
geom_errorbar(mapping = aes(ymin = SL_mean - SL_se,

ymax = SL_mean + SL_se),
width = 0.3)

We need to update:

• The specification of what to plot on the y-axis in the ggplot function

– In ggplot command: change SL_mean to trait_mean

• The values for error bar boundaries

– In geom_errorbar command: replace SL_mean with trait_mean and SL_se with
trait_se

ggplot(data = iris_means, mapping = aes(x = Species, y = trait_mean)) +
geom_point() +
geom_errorbar(mapping = aes(ymin = trait_mean - trait_se,

ymax = trait_mean + trait_se),
width = 0.3)

14

0

2

4

6

setosa versicolor virginica
Species

tr
ai

t_
m

ea
n

Something isn’t quite right. We actually want four separate charts, one for each of the traits.
To do so, we need to tell R how to break apart the data into separate charts. We do this with
the facet_wrap component of ggplot:

ggplot(data = iris_means, mapping = aes(x = Species, y = trait_mean)) +
geom_point() +
geom_errorbar(mapping = aes(ymin = trait_mean - trait_se,

ymax = trait_mean + trait_se),
width = 0.3) +

facet_wrap(~ trait)

15

Sepal.Length Sepal.Width

Petal.Length Petal.Width

setosa versicolor virginica setosa versicolor virginica

0

2

4

6

0

2

4

6

Species

tr
ai

t_
m

ea
n

OK, there are a few more things we want to change:

1. The names of each subplot reflect the trait names, which were column names in the
original data. Let’s update the values so the two words for each trait are separated by a
period, not a space (e.g. “Petal.Width” becomes “Petal Width”).

2. We should make that Y-axis title a little nicer. We’ll use ylab for that.
3. All four charts are using the same y-axis scale; note all the petal width values are below

3, but the maximum value of the y-axis is 6. Since we won’t be doing comparisons on
actual values between the charts, we can give each chart its own, independent y-axis scale.
We’ll add this information to the facet_wrap command.

Update trait names, replacing period with space
iris_means$trait <- gsub(pattern = ".",

replacement = " ",
x = iris_means$trait,
fixed = TRUE) # if fixed = FALSE, evaluates as regex

ggplot(data = iris_means, mapping = aes(x = Species, y = trait_mean)) +
geom_point() +
geom_errorbar(mapping = aes(ymin = trait_mean - trait_se,

ymax = trait_mean + trait_se),
width = 0.3) +

16

ylab(label = "Trait mean values") + # update the y-axis title
facet_wrap(~ trait, scales = "free_y") # allow y-axis scale to vary

Sepal Length Sepal Width

Petal Length Petal Width

setosa versicolor virginica setosa versicolor virginica

0.5

1.0

1.5

2.0

2.7

2.9

3.1

3.3

3.5

2

3

4

5

5.0

5.5

6.0

6.5

Species

Tr
ai

t m
ea

n
va

lu
es

With the use of tidyverse functions, we created a publication-quality graphic with just a few
lines of code.

Our final script looks like:

Plot iris trait measurements
Jeffrey C. Oliver
jcoliver@email.arizona.edu
2018-05-17

rm(list = ls())

Load the tidyverse packages
library("tidyverse")

Create data of summary statistics
iris_means <- iris %>%

pivot_longer(cols = -Species,
names_to = "trait",

17

values_to = "measurement") %>%
group_by(Species, trait) %>%
summarize(trait_mean = mean(measurement),

trait_se = sd(measurement)/sqrt(n()))

Update trait names, replacing period with space
iris_means$trait <- gsub(pattern = ".",

replacement = " ",
x = iris_means$trait,
fixed = TRUE)

Plot each trait separately
ggplot(data = iris_means, mapping = aes(x = Species, y = trait_mean)) +

geom_point() +
geom_errorbar(mapping = aes(ymin = trait_mean - trait_se,

ymax = trait_mean + trait_se),
width = 0.3) +

ylab(label = "Trait mean values") +
facet_wrap(~ trait, scales = "free_y")

Additional resources

• Official page for the tidyverse package
• Cheatsheet for data wrangling with the dpylr package
• An opinionated discussion about “tidy” data
• A PDF version of this lesson
• Software Carpentry lessons on dplyr, tidyr, and ggplot2 packages

18

https://www.tidyverse.org/
https://github.com/rstudio/cheatsheets/blob/main/data-transformation.pdf
https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html
https://jcoliver.github.io/learn-r/012-intro-tidyverse.pdf
https://swcarpentry.github.io/r-novice-gapminder/13-dplyr.html
https://swcarpentry.github.io/r-novice-gapminder/14-tidyr.html
https://swcarpentry.github.io/r-novice-gapminder/08-plot-ggplot2.html

	Data science: more fun, less pain
	Getting started
	Summarizing the data
	The hard way
	There's a better way

	Visualize!
	An aside: narratives in data
	The long way
	Additional resources

