
Heatmaps - the gene expression edition
Jeff Oliver

2024-05-16

An application of heatmap visualization to investigate differential gene expression.

Learning objectives

1. Manipulate data into a ‘tidy’ format
2. Visualize data in a heatmap
3. Become familiar with ggplot syntax for customizing plots

Heatmaps for differential gene expression

Heatmaps are a great way of displaying three-dimensional data in only two dimensions. But
how can we easily translate tabular data into a format for heatmap plotting? By taking
advantage of “data munging” and graphics packages, heatmaps are relatively easy to produce
in R.

Getting started

First we need to setup our development environment. Open RStudio and create a new project
via:

• File > New Project…
• Select ‘New Directory’
• For the Project Type select ‘New Project’
• For Directory name, call it something like “r-expression” (without the quotes)
• For the subdirectory, select somewhere you will remember (like “My Documents” or

“Desktop”)

1

We are going to start by isolating different types of information by imposing structure in our
file management. That is, we are going to put our input data in one folder and any output
such as plots or analytical results in a different folder. We can use the dir.create() function
to create these two folders:

dir.create("data")
dir.create("output")

For this lesson, we will use a subset of data on a study of gene expression in cells infected with
the influenza virus (doi: 10.4049/jimmunol.1501557). The study infected human plasmacytoid
dendritic cells with the influenza virus, and compared gene expression in those cells to gene
expression in uninfected cells. The goal was to see how the flu virus affected the function of
these immune system cells. The data for this lesson is available at: http://tinyurl.com/flu-
expression-data or https://jcoliver.github.io/learn-r/data/GSE68849-expression.csv.
Download this comma separated file and put it in the “data” folder.

Finally, we will be using two packages that are not distributed with the base R software, so
we need to install them. Note that you only have to install packages once on your machine.

install.packages("ggplot2")
install.packages("tidyr")

Data Wrangling

We’ll need to start by reading the data into memory then formatting it for use by the ggplot
package. We want all our work to be reproducible, so create a script where we can store all the
commands we use to create the heatmap. We begin this script with brief information about
the purpose of the script and load those two packages so we can use them:

Gene expression heatmap
Jeff Oliver
jcoliver@email.arizona.edu
2017-09-14

library("tidyr")
library("ggplot2")

And then we read the data into memory:

2

https://doi.org/10.4049/jimmunol.1501557
http://tinyurl.com/flu-expression-data
http://tinyurl.com/flu-expression-data
https://jcoliver.github.io/learn-r/data/GSE68849-expression.csv

exp_data <- read.csv(file = "data/GSE68849-expression.csv",
stringsAsFactors = FALSE)

Take a quick look at the data with the str command:

str(exp_data)

'data.frame': 10 obs. of 12 variables:
$ subject : chr "GSM1684095" "GSM1684096" "GSM1684097" "GSM1684098" ...
$ treatment: chr "control" "influenza" "control" "influenza" ...
$ IFNA5 : num 83.1 10096.5 97.8 8181 81.7 ...
$ IFNA13 : num 107 18974 128 15647 103 ...
$ IFNA2 : num 195 24029 129 23060 101 ...
$ SPIN1 : num 121 108 127 124 104 ...
$ ZNF451 : num 569 432 304 320 271 ...
$ IFNA16 : num 190 23060 170 21248 101 ...
$ RASSF1 : num 353 353 308 267 309 ...
$ IFNW1 : num 95.4 8665.9 97 6903.5 94.5 ...
$ MSR1 : num 107 109 95 126 105 ...
$ MIR1976 : num 104 106.3 82.8 108.9 91.4 ...

The data frame has 10 rows (or subjects) and 12 columns (or variables). The first two columns
have information about the observation (subject, treatment), and the remaining columns have
measurements for the expression of 10 genes.

We ultimately want a heatmap where the different subjects are shown along the x-axis, the
genes are shown along the y-axis, and the shading of the cell reflects how much each gene is
expressed within a subject. This latter value, the measure of gene expression, is really just
a third dimension. However, instead of creating a 3-dimensional plot that can be difficult to
visualize, we instead use shading for our “z-axis”. To this end, we need our data formatted so
we have a column corresponding to each of these three dimensions:

• X: Subject ID
• Y: Gene symbol
• Z: Expression

The challenge is that our data are not formatted like this. While the subject column corre-
sponds to what we would like for our x-axis, we do not have columns that correspond to what
is needed for the y- and z-axes. All the data are in our data frame, but we need to take a table
that looks like this:

3

subject treatment IFNA5 IFNA13 IFNA2
GSM1684095 control 83.129 107.219 195.175
GSM1684096 influenza 10096.47 18974.16 195.175
… … … …

And transform it to one with a column for the gene and a column for expression, like this:

subject gene expression
GSM1684095 IFNA5 83.129
GSM1684095 IFNA13 107.219
GSM1684095 IFNA2 195.175
GSM1684096 IFNA5 10096.47
GSM1684096 IFNA13 18974.16
GSM1684096 IFNA2 24029.11
… … …

Thankfully, there is a function in the tidyr package called pivot_longer that is designed for
creating this type of “tidy”” data.

exp_long <- pivot_longer(data = exp_data,
cols = everything(),
names_to = "gene",
values_to = "expression")

Error in `pivot_longer()`:
! Can't combine `subject` <character> and `IFNA5` <double>.

Uh oh. That error is preventing us from transforming our data to long format. What R is
telling us is that we tried to create a column with multiple data types in it, which is a big no-no
in R. That is, it attempted to make a single column that had both the data from the “subject”
column (which are text) with the data from the “IFNA5” column (which are numbers).

We will need to tell pivot_longer to ignore the “subject” column in our original data frame
during the transformation. By ignoring that column, R will carry the values over into our new
data frame. We ignore columns by adding their names, preceded by a negation symbol(“-”),
to the pivot_longer call (we’re going to ignore the treatment column, too, to make sure it
ends up in our exp_long data frame):

4

exp_long <- pivot_longer(data = exp_data,
cols = -c(subject, treatment),
names_to = "gene",
values_to = "expression")

head(exp_long)

A tibble: 6 x 4
subject treatment gene expression
<chr> <chr> <chr> <dbl>

1 GSM1684095 control IFNA5 83.1
2 GSM1684095 control IFNA13 107.
3 GSM1684095 control IFNA2 195.
4 GSM1684095 control SPIN1 121.
5 GSM1684095 control ZNF451 569.
6 GSM1684095 control IFNA16 190.

Aha! Much better.

To recap, at this point we loaded in the libraries we are dependent on, read in data from a file,
and transformed the data for easy use with heatmap tools:

Gene expression heatmap
Jeff Oliver
jcoliver@email.arizona.edu
2017-09-14

library("tidyr")
library("ggplot2")

Read in the data
exp_data <- read.csv(file = "data/GSE68849-expression.csv",

stringsAsFactors = FALSE)

Transform to "long" format
exp_long <- pivot_longer(data = exp_data,

cols = -c(subject, treatment),
names_to = "gene",
values_to = "expression")

5

Visualize the data!

For this plot, we are going to first create the heatmap object with the ggplot function, then
print the plot. We create the object by assigning the output of the ggplot call to the variable
exp_heatmap, then entering the name of this object to print it to the screen.

exp_heatmap <- ggplot(data = exp_long, mapping = aes(x = subject,
y = gene,
fill = expression))

exp_heatmap

IFNA13

IFNA16

IFNA2

IFNA5

IFNW1

MIR1976

MSR1

RASSF1

SPIN1

ZNF451

GSM1684095GSM1684096GSM1684097GSM1684098GSM1684099GSM1684100GSM1684101GSM1684102GSM1684103GSM1684104
subject

ge
ne

What happened? Our plot doesn’t show any data!? Here is where functionality of ggplot is
evident. The way it works is by effectively drawing layer upon layer of graphics. So we have
established the plot, we told R what to put on the X and Y axes, but we need to add one more
bit of information to tell ggplot how to display data in the plot area. For a heat map, we use
geom_tile(), literally adding this to the ggplot object with a plus sign (+):

exp_heatmap <- ggplot(data = exp_long, mapping = aes(x = subject,
y = gene,
fill = expression)) +

geom_tile()

exp_heatmap

6

IFNA13

IFNA16

IFNA2

IFNA5

IFNW1

MIR1976

MSR1

RASSF1

SPIN1

ZNF451

GSM1684095GSM1684096GSM1684097GSM1684098GSM1684099GSM1684100GSM1684101GSM1684102GSM1684103GSM1684104
subject

ge
ne

expression

5000

10000

15000

20000

OK, that’s a good start. But we need to fix a few things:

1. The scale of the expression values is dominated by a few very large values. We should
transform the data to so it is easier to see the variation among low expression values.

2. The axes could be displayed better.
3. It would be nice to have all the infected cells on one side of the graph and the control

cells on the other side of the graph.
4. Finally, we should be able to save this plot to a pdf file.

To better visualize the variation of lower expression values, we can create a new column in our
data frame with the log10 expression values and use that for the heatmap shading:

exp_long$log.expression <- log(exp_long$expression)

exp_heatmap <- ggplot(data = exp_long, mapping = aes(x = subject,
y = gene,
fill = log.expression)) +

geom_tile()

exp_heatmap

7

IFNA13

IFNA16

IFNA2

IFNA5

IFNW1

MIR1976

MSR1

RASSF1

SPIN1

ZNF451

GSM1684095GSM1684096GSM1684097GSM1684098GSM1684099GSM1684100GSM1684101GSM1684102GSM1684103GSM1684104
subject

ge
ne

log.expression

6

8

10

Note we also had to update the value we pass to the fill parameter in the aes call of ggplot.

For the axes clean up, we’ll use a nicer label for the x-axis title, rotate the values of the x-axis
labels, and omit the title of the y-axis entirely:

exp_heatmap <- ggplot(data = exp_long, mapping = aes(x = subject,
y = gene,
fill = log.expression)) +

geom_tile() +
xlab(label = "Subject") + # Add a nicer x-axis title
theme(axis.title.y = element_blank(), # Remove the y-axis title

axis.text.x = element_text(angle = 45, vjust = 0.5)) # Rotate the x-axis labels

exp_heatmap

8

IFNA13

IFNA16

IFNA2

IFNA5

IFNW1

MIR1976

MSR1

RASSF1

SPIN1

ZNF451

GSM
16

84
09

5

GSM
16

84
09

6

GSM
16

84
09

7

GSM
16

84
09

8

GSM
16

84
09

9

GSM
16

84
10

0

GSM
16

84
10

1

GSM
16

84
10

2

GSM
16

84
10

3

GSM
16

84
10

4

Subject

log.expression

6

8

10

To separate out the control cells from flu cells, we use the facet_grid layer of ggplot:

exp_heatmap <- ggplot(data = exp_long, mapping = aes(x = subject,
y = gene,
fill = log.expression)) +

geom_tile() +
xlab(label = "Subject") +
facet_grid makes two panels, one for control, one for flu:
facet_grid(~ treatment, switch = "x", scales = "free_x", space = "free_x") +
theme(axis.title.y = element_blank(),

axis.text.x = element_text(angle = 45, vjust = 0.5))

exp_heatmap

9

control influenza

GSM
16

84
09

5

GSM
16

84
09

7

GSM
16

84
09

9

GSM
16

84
10

1

GSM
16

84
10

3

GSM
16

84
09

6

GSM
16

84
09

8

GSM
16

84
10

0

GSM
16

84
10

2

GSM
16

84
10

4

IFNA13

IFNA16

IFNA2

IFNA5

IFNW1

MIR1976

MSR1

RASSF1

SPIN1

ZNF451

Subject

log.expression

6

8

10

And the last thing is to save the image to a file. We can do this in a variety of ways, but the
ggsave function will work fine in this case:

ggsave(filename = "output/expression-heatmap.pdf", plot = exp_heatmap)

Our final script for this heatmap is then:

Gene expression heatmap
Jeff Oliver
jcoliver@email.arizona.edu
2017-09-14

library("tidyr")
library("ggplot2")

exp_data <- read.csv(file = "data/GSE68849-expression.csv",
stringsAsFactors = FALSE)

exp_long <- pivot_longer(data = exp_data,
cols = -c(subject, treatment),
names_to = "gene",
values_to = "expression")

10

exp_long$log.expression <- log(exp_long$expression)

exp_heatmap <- ggplot(data = exp_long, mapping = aes(x = subject,
y = gene,
fill = log.expression)) +

geom_tile() +
xlab(label = "Subject") +
facet_grid(~ treatment, switch = "x", scales = "free_x", space = "free_x") +
theme(axis.title.y = element_blank(),

axis.text.x = element_text(angle = 45, vjust = 0.5))

ggsave(filename = "output/expression-heatmap.pdf", plot = exp_heatmap)

Additional resources

• The entire data set of gene expression from NCBI is available at: https://www.ncbi.n
lm.nih.gov/geo/query/acc.cgi?acc=GSE68849

• Paper describing tidy data
• A great introduction to data tidying
• A cheat sheet for data wrangling
• Official documentation for ggplot
• A cheat sheet for ggplot
• Documentation for geom_bin2d, to create heatmaps for continuous x- and y-axes
• A PDF version of this lesson

11

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68849
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68849
https://www.jstatsoft.org/article/view/v059i10
http://garrettgman.github.io/tidying/
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
http://ggplot2.tidyverse.org/reference/
https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf
http://ggplot2.tidyverse.org/reference/geom_bin2d.html
https://jcoliver.github.io/learn-r/009-expression-heatmaps.pdf

	Heatmaps for differential gene expression
	Getting started
	Data Wrangling
	Visualize the data!
	Additional resources

