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An introduction to writing functions to improve your coding efficiency and optimize perfor-
mance.

Learning objectives

1. Write and use functions in R
2. Document functions for easy re-use
3. Replace loops with functions optimized for vector calculations

Don’t Repeat Yourself

The DRY principle aims to reduce repetition in software engineering. By writing and using
functions to accomplish a set of instructions multiple times, you reduce the opportunities for
mistakes and often improve performance of the code you write. Functional programming makes
it easy to apply the same analyses to different sets of data, without excessive copy-paste-update
cycles that can introduce hard-to-detect errors.

Setup

First we need to setup our development environment. Open RStudio and create a new project
via:

• File > New Project…
• Select ‘New Directory’
• For the Project Type select ‘New Project’
• For Directory name, call it something like “r-functions” (without the quotes)
• For the subdirectory, select somewhere you will remember (like “My Documents” or

“Desktop”)
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Writing functions

Why do we write functions? Usually, we create functions after writing some code with cer-
tain variables, then copy/pasting that code and changing the variable names. Then more
copy/paste. Then we forget to change one of the variables and spend a day figuring out why
our results don’t make sense.

For example, consider the iris data set:

head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

And if we look at the values for each of the four measurements, some are quite different in
their ranges.

summary(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

Species
setosa :50
versicolor:50
virginica :50

Given this variation in ranges and magnitudes, we will have to standardize the variables if we
want to run analyses like principle components analysis (PCA) (PCA is beyond the scope of
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this lesson, but it is covered in a separate lesson). Standardizing a variable means we transform
the data so the mean value is zero and the standard deviation is one.

We’ll start by creating an R script to hold our work. R scripts are simple text files with a
series of R commands and are a great way to make our work reproducible. For all scripts, it
is a good idea to start off with a little information about what the script does (and who is
responsible for it). So create a script (from the File menu, select New File > R Script or use
the keyboard shortcut of Ctrl+Shift+N or Cmd+Shift+N).

# Standardize iris values
# Jeff Oliver
# jcoliver@email.arizona.edu
# 2018-08-16

R will ignore anything that appears to the right of the pound sign, #. This information allows
anyone who is reading the script to quickly know (1) what the script does and (2) who to contact
with questions. While we are at it, go ahead and save this file as “standardize-iris.R”.

To standardize a variable, we subtract observed values by the mean, and divide that difference
by the standard deviation ((𝑥𝑖 − 𝜇)/𝜎).

We start by performing the calculation on the petal length data, first calculating the two
summary statistics (mean and standard deviation), then using them in the formula for stan-
dardization.

# Standardize petal length
mean_petal_length <- mean(iris$Petal.Length)
sd_petal_length <- sd(iris$Petal.Length)
standard_petal_length <- (iris$Petal.Length - mean_petal_length)/sd_petal_length

We can use the summary command to ensure the mean is zero,

summary(standard_petal_length)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.5623 -1.2225 0.3354 0.0000 0.7602 1.7799

and the sd function to make sure the standard deviation is one.

sd(standard_petal_length)

[1] 1
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Now that we have the calculation for petal length, we can copy the code and update it to
perform calculation for petal width.

# Standardize petal width
mean_petal_width <- mean(iris$Petal.Width)
sd_petal_width <- sd(iris$Petal.Width)
standard_petal_width <- (iris$Petal.Width - mean_petal_width)/sd_petal_width
summary(standard_petal_width)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.4422 -1.1799 0.1321 0.0000 0.7880 1.7064

But we had to change three instances of “Length” to “Width” and seven (seven!?) instances
of “length” to “width”. Did copy/paste really save time? And how many opportunities for
mistakes?

Here we have a perfect opportunity to write a function that will do those three steps for any
data we want. And we can avoid the inevitable errors that arise with the copy-paste-update
process.

Write a function!

When we write a function, it is very much like assigning a value to a variable. However, in this
instance, we assign the value produced by a special function in R called function (shocking,
I know). When writing functions, I generally start by naming the function and creating a
function with nothing in it. We will call our function standardize:

standardize <- function(data) {

}

Note that there is a variable data in the call to function. This is referring to the data that
we will perform our standarization calculation on. The next step is to outline what actions
the function will peform. I start with comments to help with this process.

standardize <- function(data) {
# Calculate mean of data
# Calculate standard deviation of data
# Calculate standardized scores

}

4



These comments then provide a roadmap of the code that needs to be written inside the
function. We start by adding the mean calculation to the function:

standardize <- function(data) {
# Calculate mean of data
mean_data <- mean(data)
# Calculate standard deviation of data
# Calculate standardized scores

}

Next we fill in the standard deviation and standardization code:

standardize <- function(data) {
# Calculate mean of data
mean_data <- mean(data)
# Calculate standard deviation of data
sd_data <- sd(data)
# Calculate standardized scores
stand_data <- (data - mean_data)/sd_data

}

At this point, remember that we want to use this function with the iris data. However, at
no point in the function are we referring to the iris data frame. This is because we want our
function to be generalizable to other data as well. The last thing we need to do is to send the
standardized values back to the user. This is known as “returning” a value, and we use the
function return to do so:

standardize <- function(data) {
# Calculate mean of data
mean_data <- mean(data)
# Calculate standard deviation of data
sd_data <- sd(data)
# Calculate standardized scores
stand_data <- (data - mean_data)/sd_data
return(stand_data)

}

At this point, our function is almost ready for use. The last thing we need to do is to read it
into memory. We do this like we are running any other line of code in R: place your cursor on
one of the curly braces and run the code with Ctrl-Enter or Cmd-Enter.

Now we can use the function. We can replace the three lines that performed the calculation
for petal length with a single line that calls our standardize function:
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standard_petal_length <- standardize(data = iris$Petal.Length)

Like all code, we want to provide enough information so it is easy for someone else to use. So
we want to add documentation that consists at a minimum of three things:

1. A brief explanation of what the function does
2. A description of the information needs to be provided to the function
3. An explanation of what the function returns

# Standardize a vector of numerical data
# data: vector of numerical data
# returns: vector of original data standardized to have mean = 0, sd = 1
standardize <- function(data) {

# Calculate mean of data
mean_data <- mean(data)
# Calculate standard deviation of data
sd_data <- sd(data)
# Calculate standardized scores
stand_data <- (data - mean_data)/sd_data
return(stand_data)

}

Now we have a function we can use on each of the columns in our data frame. Yay, right?
Well, almost. We still have to run the standardize function four times on the iris data frame.
What if we had 100 columns of data? Or 1000 columns? That is simply too much copy and
paste. We can use the apply function to run the standardize function on each column of
data.

We need to tell apply three things:

1. The data frame to use, in this case we are using the iris data
2. Whether to do calculations for each row or each column; we use the MARGIN parameter

for this: MARGIN = 1 means do calculation for each row while MARGIN = 2 means do
calculation for each column. We want to do calculations for each column

3. The function to use; here we use the function we just wrote, standardize

Note the apply function arguments X, MARGIN, and FUN are all capitalized. I have no idea
why.

iris_stand <- apply(X = iris, MARGIN = 2, FUN = standardize)

Warning in mean.default(data): argument is not numeric or logical: returning NA
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Error in data - mean_data: non-numeric argument to binary operator

Well that didn’t work. Why not? Let us look at the iris data again:

head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

The error occurs because the standardize function is run on all columns, including the
“Species” column, which contains non-numerical data. We need to skip that column when we
send data to the apply function. One way to do this is to use the negation operator (the minus
sign, “-”) with the index of the column we want to skip. In our case, the “Species” column is
the fifth column, so we drop that column in our call to apply via iris[, -5].

# Run standardize on all numeric columns
iris_stand <- apply(X = iris[, -5], MARGIN = 2, FUN = standardize)

We also need to convert the output back to a data frame with as.data.frame. We can then
look at the first few rows with head.

# Convert output to data frame
iris_stand <- as.data.frame(iris_stand)
head(iris_stand)

Sepal.Length Sepal.Width Petal.Length Petal.Width
1 -0.8976739 1.01560199 -1.335752 -1.311052
2 -1.1392005 -0.13153881 -1.335752 -1.311052
3 -1.3807271 0.32731751 -1.392399 -1.311052
4 -1.5014904 0.09788935 -1.279104 -1.311052
5 -1.0184372 1.24503015 -1.335752 -1.311052
6 -0.5353840 1.93331463 -1.165809 -1.048667

Great. But what’s missing? The “Species” column is not included in the results because
we did not send it to the apply function (remember, we had to skip it because it contained
non-numerical data). We can add it back, though, copying from the “Species” column in the
original data.
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# Add back species column
iris_stand$Species <- iris$Species
head(iris_stand)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 -0.8976739 1.01560199 -1.335752 -1.311052 setosa
2 -1.1392005 -0.13153881 -1.335752 -1.311052 setosa
3 -1.3807271 0.32731751 -1.392399 -1.311052 setosa
4 -1.5014904 0.09788935 -1.279104 -1.311052 setosa
5 -1.0184372 1.24503015 -1.335752 -1.311052 setosa
6 -0.5353840 1.93331463 -1.165809 -1.048667 setosa

So to summarize at this point, we wrote a function, standardize, and applied that to all the
numeric data columns in the iris data.

# Run standardize on all numeric columns
iris_stand <- apply(X = iris[, -5], MARGIN = 2, FUN = standardize)
# Convert output to data frame
iris_stand <- as.data.frame(iris_stand)
# Add back species column
iris_stand$Species <- iris$Species

At this point, though, we have to ask ourselves two questions:

1. Can I use this function with other projects?
2. Can we have a function do all that business with apply, converting back to a data frame,

and add on those missing columns?

The answer to both is, of course, yes.

Use the source

Right now, the function we wrote, standardize, is locked up inside the standardize-iris.R
file. This makes it hard to use outside of this file. In order to make the standardize function
useable elsewhere, we need to move the function to a separate file and use the source command
in any script that we would like to use our function. For the first step, create a new R script
through the File menu or with the keyboard shortcut (Ctrl+Shift+N or Cmd+Shift+N). Let
us call this file “standardization-functions.R”.

As we did with our script, we want to start the file with a header that has a little information
about what is included in the script.
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# Functions for standardizing data
# Jeff Oliver
# jcoliver@arizona.edu
# 2020-05-20

Now cut (Ctrl-X or Cmd-X) the function from our original script (the file called “standardize-
iris.R”) and paste (Ctrl-V or Cmd-V) it into this new script (the file called “standardization-
functions.R”).

So we have done the first part (moving our function to a separate file), but how do we actually
use it?

The source command.

But we should pause for a moment to clean up our workspace. We can remove all variables
from memory by running:

rm(list = ls())

We are doing this now just to ensure we are using the standardize function defined in the
file we just created.

When we use source, we tell R to run all the code in a specific file. Go to your first script
(“standardize-iris.R”) and add the source command, setting file to the name of our script
with the standarize function (“standardization-functions.R”).

source(file = "standardization-functions.R")

An important thing to remember about the source function is that it will run all the code
in that file. We can see this behavior by adding a line before our standardize function and
re-running the source function.

First, add this line to the standardization-functions.R file:

message("Loading functions from standarization-functions.R")

Save the standardization-functions.R file, then re-run the line with source in “standardize-
iris.R”:

source(file = "standardization-functions.R")

Loading functions from standarization-functions.R

If there are additional commands in the file you call source on, such as variable declarations,
it will run the code and those variables will be added to memory. Sometimes that is OK, but
I will caution against using source for anything other than loading functions into memory.
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Functions within functions

Now that we have a separate file for functions, let us return to the other point, about writing
a function that standardizes all numeric columns of a data frame.

So let us go back to our file with the standardize function (“standardization-functions.R”)
and at the end of the file, start defining a new function we will call standardize_df. We will
pass it one argument, df.

standardize_df <- function(df) {

}

Just as we did with standardize let us start by enumerating the steps to take to accomplish
this. Since we already wrote the code to do each of these steps, we can paste the code in the
function and comment it out. We can use this to guide the code we write. (If you don’t have
code that is easy to copy/paste, you can skip to writing comments about the steps that need
to occur in the function.)

standardize_df <- function(df) {
# Run standardize on all numeric columns
# iris_stand <- apply(X = iris[, -5], MARGIN = 2, FUN = standardize)
# Convert output to data frame
# iris_stand <- as.data.frame(iris_stand)
# Add back species column
# iris_stand$Species <- iris$Species

}

Looking at what we did before, there presents a challenge: How do we know which columns to
skip? That is, how can we tell which columns are not numeric? We “hard-coded” the script to
skip the fifth column, which holds the species’ names. But how do we make this flexible enough
so we do not need users to enter which columns to skip? We can use the function is.numeric
on each column to figure out which columns have numeric data and thus are appropriate for
the standardization transformation.

So we need to add another step to our function, where we look at the incoming data (a data
frame called df). The first thing the function needs to do is figure out which columns in df
are numeric and which columns are not numeric.

standardize_df <- function(df) {
# Identify numeric columns
# Run standardize on all numeric columns
# iris_stand <- apply(X = iris[, -5], MARGIN = 2, FUN = standardize)
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# Convert output to data frame
# iris_stand <- as.data.frame(iris_stand)
# Add back species column
# iris_stand$Species <- iris$Species

}

To extract this information, we can use the sapply function, which is related to apply; if
you want to read more about sapply (and apply and lapply), there is a nice discussion at
https://nsaunders.wordpress.com/2010/08/20/a-brief-introduction-to-apply-in-r/.

The function is.numeric will tell us if an individual column has numeric data, so we can test
out sapply and is.numeric on the iris data:

sapply(X = iris, FUN = is.numeric)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
TRUE TRUE TRUE TRUE FALSE

This is great! The value returned is a logical vector (a vector of TRUE/FALSE values) that
tells us which columns are numeric (Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)
and which columns are not numeric (Species).

We can update our function to extract the information about whether or not a column is
numeric.

standardize_df <- function(df) {
# Identify numeric columns
col_numeric <- sapply(X = df, FUN = is.numeric)
# Run standardize on all numeric columns
# iris_stand <- apply(X = iris[, -5], MARGIN = 2, FUN = standardize)
# Convert output to data frame
# iris_stand <- as.data.frame(iris_stand)
# Add back species column
# iris_stand$Species <- iris$Species

}

But now, the information stored within the function in the variable col_numeric allows us
some efficiencies. Because col_numeric has as many elements as there are columns in df, we
can get crafty with R to use our standardize function to update columns of interest. If we
can update columns rather than creating a new data frame, we can skip the step where we
add back those non-numeric column. What does this look like, then? We change the apply
command to use the col_numeric vector and update the data frame df rather than creating
an entirely new data frame.
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standardize_df <- function(df) {
# Identify numeric columns
col_numeric <- sapply(X = df, FUN = is.numeric)
# Run standardize on all numeric columns
# iris_stand <- apply(X = iris[, -5], MARGIN = 2, FUN = standardize)
df[, col_numeric] <- apply(X = df[, col_numeric],

MARGIN = 2,
FUN = standardize)

# Convert output to data frame
# iris_stand <- as.data.frame(iris_stand)
# Add back species column
# iris_stand$Species <- iris$Species

}

Note that I did not remove the comment with the old code. Take a moment to notice an
important difference: we did not create a new data frame (in our hard-coded version, this
was iris_stand). Instead, we assigned values to the numeric columns of df (via df[,
col_numeric]). Similar to our previous code, though, inside the apply command we did
skip all non-numeric columns in the data frame (also via df[, col_numeric]).

At this point, our function is almost done; we need to do two more things:

1. Use the return function
2. Document the function

While we add the return function, we can also clean up the commented-out code from inside
the function.

standardize_df <- function(df) {
# Identify numeric columns
col_numeric <- sapply(X = df, FUN = is.numeric)
# Run standardize on all numeric columns
df[, col_numeric] <- apply(X = df[, col_numeric],

MARGIN = 2,
FUN = standardize)

return(df)
}

And before we are done, we add the minimal documentation.
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# Standardize all numeric columns of a data frame
# df: data frame
# returns: data frame with numeric columns standardized to mean = 0, sd = 1
standardize_df <- function(df) {

# Identify numeric columns
col_numeric <- sapply(X = df, FUN = is.numeric)
# Run standardize on all numeric columns
df[, col_numeric] <- apply(X = df[, col_numeric],

MARGIN = 2,
FUN = standardize)

return(df)
}

At this point, we are ready to try it out, so save this file (“standardization-functions.R”) and
go back to our first script where we are doing the standardization of the iris data (“standardize-
iris.R”).

Now we need one line:

iris_stand <- standardize_df(df = iris)

Error in standardize_df(df = iris): could not find function "standardize_df"

This probably did not work. Why not?

Remember, when we use functions that are located in another file, we will need to run the
source command any time we have made changes. So after saving standardization-functions.R,
we need to re-run the source command to load any changes we made to standardization-
functions.R.

source(file = "standardization-functions.R")

And re-run the line calling standardize_df.

iris_stand <- standardize_df(df = iris)

We can use head once more to see the first few rows of our new data frame.

head(iris_stand)
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Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 -0.8976739 1.01560199 -1.335752 -1.311052 setosa
2 -1.1392005 -0.13153881 -1.335752 -1.311052 setosa
3 -1.3807271 0.32731751 -1.392399 -1.311052 setosa
4 -1.5014904 0.09788935 -1.279104 -1.311052 setosa
5 -1.0184372 1.24503015 -1.335752 -1.311052 setosa
6 -0.5353840 1.93331463 -1.165809 -1.048667 setosa

Woo-hoo!

In summary, we created two files. One file, “standardization-functions.R”, includes the two
functions we wrote:

# Functions for standardizing data
# Jeff Oliver
# jcoliver@arizona.edu
# 2020-05-20

message("Loading functions from standarization-functions.R")

# Standardize a vector of numerical data
# data: vector of numerical data
# returns: vector of original data standardized to have mean = 0, sd = 1
standardize <- function(data) {

# Calculate mean of data
mean_data <- mean(data)
# Calculate standard deviation of data
sd_data <- sd(data)
# Calculate standardized scores
stand_data <- (data - mean_data)/sd_data
return(stand_data)

}

# Standardize all numeric columns of a data frame
# df: data frame
# returns: data frame with numeric columns standardized to mean = 0, sd = 1
standardize_df <- function(df) {

# Identify numeric columns
col_numeric <- sapply(X = df, FUN = is.numeric)
# Run standardize on all numeric columns
df[, col_numeric] <- apply(X = df[, col_numeric],

MARGIN = 2,
FUN = standardize)
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return(df)
}

Our analysis file is now quite small, as we have shifted much of the code to the standardization-
functions.R file.

# Standardize iris values
# Jeff Oliver
# jcoliver@email.arizona.edu
# 2018-08-16

source(file = "standardization-functions.R")

iris_stand <- standardize_df(df = iris)

Actually developing a function

So I need to come clean about writing these functions. In the lesson above, they are concise and
fairly clean. They were certainly not born that way. In writing the standardize_df function,
which is effectively three lines of code (find the numeric columns, run the standardize function
on each column, return the values), I probably wrote 30 lines of code testing different ways of
performing those steps. When writing a function, here are a few things to consider:

1. Clean out your workspace with rm(list = ls()). The code inside your function should
not be dependent on any “outside” variables or data. That is, you only want to use vari-
bles that are (1) passed to the function (those variables we name when using function,
e.g. the data variable in the standardize function, standardize <- function(data))
or (2) defined within the function (like mean_data <- mean(data)).

2. Step through the function one line at a time. The process for this does require you to
assign values to all those arguments named in the function definition. So to test the
standardize function, I first assigned a value to the data variable, in this case, the
petal length column, by running data <- iris$Petal.Length. Then I ran the first
line of code in the standardize function (mean_data <- mean(data)), then the second
(sd_data <- sd(data)), and so on (in this development process, you do not run the line
defining the function, standardize <- function(data)). Along the way, do some real-
ity checks to make sure things work the way they should. For example, you can compare
the output of mean(data) for petal length with the output of mean(iris$Petal.Length)
with all(mean(data) == mean(iris$Petal.Length)).

3. Think from the point of a naive user. This is especially important when writing your
documentation. Also, if you wait six months and come back to your functions, you will
be that naive user.

4. Clean out your workspace.
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Debugging tips

It is not working.

Why is it not working?

This will happen. Guaranteed. When debugging a function, one of the best functions to know
about is cat. This allows you to print little messages to the console, building in those reality
checks. Find points in your code where you know a variable should have a certain value and
use the cat function (or multiple calls to cat) to print out what the value of the variable really
is. For example, if we are debugging the standardize function, we can cat the values of the
mean for a column in our data frame to make sure the values are what we expect. We would
first update the function with a call to cat:

# Standardize a vector of numerical data
# data: vector of numerical data
# returns: vector of original data standardized to have mean = 0, sd = 1
standardize <- function(data) {

# Calculate mean of data
mean_data <- mean(data)
cat("Value of mean: ", mean_data, "\n")
# Calculate standard deviation of data
sd_data <- sd(data)
# Calculate standardized scores
stand_data <- (data - mean_data)/sd_data
return(stand_data)

}

Note that in this case we provide three things to the cat function (which I am pretty sure
stands for “concatenate”):

1. "Value of mean: " is a bit of text that reminds me what is being printed
2. mean_data is the name of the variable that stores the mean of the column of data that

was passed to the function as data; cat will not print “mean_data”, but rather the value
stored in mean_data

3. \n is the end of line character so whatever R outputs after this call to cat appears on a
new line

Now we can run this function on the petal length column of the iris data (remember to reload
standardize into memory first!) and compare the values to calculations directly on the iris
data:
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# Test standardize function on petal length
petal_length_stand <- standardize(data = iris$Petal.Length)
# Calculate and print actual mean value of petal length
mean(iris$Petal.Length)

In addition to printing values, you can also use functions like is.numeric or typeof to ensure
the data you think you are working with really is in the form you want it to be.

You will eventually want to remove those calls to cat, or at the very least comment them out
so they don’t print every time you run your function.

When debugging, also remember to make incremental changes. Change one line. Check to
make sure it works as expected. Check it again with different data. Change the next line.
Avoid taking a 50-line function, and changing 30 lines all at once. Where there was once one
bug, now there are three.

Finally, remember to keep functions small (when you can). We could have written a single
function to do all the work. That is, we could have just written standardize_df, but it
would have made it tougher to debug. Some zealots even assert that a function should do one
thing and only one thing. While that is a bit extreme, it is a useful guiding principle that
helps streamline the development process. Check out the resources below for more information
about writing functions and best practices.

Additional resources

• A deeper dive to functional programming
• An even deeper dive into functional programming
• Some opinions and suggestions for naming things like functions (see the ‘Object names’

section)
• A PDF version of this lesson
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