
Heatmaps in R

Jeff Oliver

15 October, 2020

A worked example of making heatmaps in R with the ggplot package, as well as some data wrangling to
easily format the data needed for the plot.

Learning objectives

1. Manipulate data into a ‘tidy’ format
2. Visualize data in a heatmap
3. Become familiar with ggplot syntax for customizing plots

Heatmaps & data wrangling
Heatmaps are a great way of displaying three-dimensional data in only two dimensions. But how can we
easily translate tabular data into a format for heatmap plotting? By taking advantage of “data munging”
and graphics packages, heatmaps are relatively easy to produce in R.

Getting started
Start by creating a new project in RStudio and creating two folders we’ll use to organize our efforts. The two
folders should be data and output and will store. . . data and output.
dir.create("data")
dir.create("output")

For this lesson we will use data from a diversity survey of microbial life in a chrysotile asbestos mine. Driscoll
and colleagues doi: 10.1016/j.gdata.2016.11.004 used next generation sequencing to identify and categorize
bacterial diversity in a flooded pit of the abandoned mine. The data are normalized read counts for microbes
found at the sites. A subset of the data can be downloaded from https://tinyurl.com/mine-data-csv (which
itself redirects to https://jcoliver.github.io/learn-r/data/mine-microbe-class-data.csv). You can download
this file to your computer with the download.file function:
download.file(url = "https://tinyurl.com/mine-data-csv",

destfile = "data/mine-data.csv")

This downloads the data and saves it in the data directory as mine-data.csv.

Data Wrangling
We’ll need to start by reading the data into memory then formatting it for use by the ggplot package. We
want all our work to be reproducible, so create a script where we can store all the commands we use to create
the heatmap. We begin this script with brief information about the purpose of the script:

1

https://en.wikipedia.org/wiki/Chrysotile
https://doi.org/10.1016/j.gdata.2016.11.004
https://tinyurl.com/mine-data-csv
https://jcoliver.github.io/learn-r/data/mine-microbe-class-data.csv

Heatmap of mine pit microbe diversity
Jeff Oliver
jcoliver@email.arizona.edu
2017-06-05

Now we read those abundance data into memory:
mine.data <- read.csv(file = "data/mine-data.csv")

Take a quick look at the structure of the data, using the str command:
str(mine.data)

'data.frame': 8 obs. of 13 variables:
$ Site : int 1 2 3 1 2 3 2 3
$ Depth : num 0.5 0.5 0.5 3.5 3.5 3.5 25 25
$ Sample.name : chr "1-S" "2-S" "3-S" "1-M" ...
$ Actinobacteria : int 373871 332856 326695 409809 319778 445572 128251 96304
$ Cytophagia : int 8052 28561 10468 4481 15885 7302 4732 5566
$ Flavobacteriia : int 0 0 0 0 5230 6218 5917 6353
$ Sphingobacteriia : int 0 10013 4918 0 8274 8284 0 0
$ Nitrospira : int 0 0 0 0 0 0 4609 0
$ Planctomycetia : int 4553 10008 0 0 0 0 56836 67380
$ Alphaproteobacteria: int 143534 70575 105890 110746 52504 45000 133851 95580
$ Betaproteobacteria : int 124454 170161 187673 87245 146073 91711 90204 85707
$ Deltaproteobacteria: int 0 0 0 0 0 0 4260 0
$ Gammaproteobacteria: int 8426 9005 12935 7025 110825 69452 31956 165572

The data frame has 8 rows (“obs.”) and 13 columns (“variables”). The first three columns have information
about the observation (Site, Depth, Sample.name), and the remaining columns have the abundance for each
of 10 classes of bacteria.

We ultimately want a heatmap where the different sites are shown along the x-axis, the classes of bacteria are
shown along the y-axis, and the shading of the cell reflects the abundance. This latter value, the abundance
of a bacteria at specific depths at different site, is really just a third dimension. However, instead of creating
a 3-dimensional plot that can be difficult to visualize, we instead use shading for our “z-axis”. To this end,
we need our data formatted so we have a column corresponding to each of these three dimensions:

• X: Sample identity
• Y: Bacterial class
• Z: Abundance

The challenge is that our data are not formatted like this. While the Sample.name column corresponds to
what we would like for our x-axis, we do not have columns that correspond to what is needed for the y- and
z-axes. All the data are in our data frame, but we need to take a table that looks like this:

Site.name Actinobacteria Cytophagia
1-S 373871 8052
2-S 332856 28561
.

And transform it to one with a column for bacterial class and a column for abundance, like this:

Site.name Class Abundance
1-S Actinobacteria 373871
1-S Cytophagia 8052

2

Site.name Class Abundance
2-S Actinobacteria 332856
2-S Cytophagia 28561
.

Thankfully, there is an R package that does this for us! The tidyr package is designed for creating this type
of “tidy”" data.
install.packages("tidyr")

library("tidyr")

In fact, we can do this transformation in one line with the pivot_longer function:
mine.long <- pivot_longer(data = mine.data,

cols = everything(),
names_to = "Class",
values_to = "Abundance")

Error: Can't combine `Site` <double> and `Sample.name` <character>.

Uh oh. That error is preventing us from transforming our data to long format. What R is telling us is that
we tried to create a column with multiple data types in it, which is a big no-no in R. That is, it attempted to
make a single column that had both the data from the “Site” column (which are numbers) with the data
from the “Sample.name” column, which is a factor (factors are what R calls categories).

Consider our original data structure:
str(mine.data)

'data.frame': 8 obs. of 13 variables:
$ Site : int 1 2 3 1 2 3 2 3
$ Depth : num 0.5 0.5 0.5 3.5 3.5 3.5 25 25
$ Sample.name : chr "1-S" "2-S" "3-S" "1-M" ...
$ Actinobacteria : int 373871 332856 326695 409809 319778 445572 128251 96304
$ Cytophagia : int 8052 28561 10468 4481 15885 7302 4732 5566
$ Flavobacteriia : int 0 0 0 0 5230 6218 5917 6353
$ Sphingobacteriia : int 0 10013 4918 0 8274 8284 0 0
$ Nitrospira : int 0 0 0 0 0 0 4609 0
$ Planctomycetia : int 4553 10008 0 0 0 0 56836 67380
$ Alphaproteobacteria: int 143534 70575 105890 110746 52504 45000 133851 95580
$ Betaproteobacteria : int 124454 170161 187673 87245 146073 91711 90204 85707
$ Deltaproteobacteria: int 0 0 0 0 0 0 4260 0
$ Gammaproteobacteria: int 8426 9005 12935 7025 110825 69452 31956 165572

Notice there are columns that don’t need to be transformed for our heatmap. Namely, Site, Depth, and
Sample.name can all remain as-is. To do this, we instruct pivot_longer to ignore the first three columns of
the data frame by negating those columns (-c(1:3):
mine.long <- pivot_longer(data = mine.data,

cols = -c(1:3),
names_to = "Class",
values_to = "Abundance")

head(mine.long)

A tibble: 6 x 5
Site Depth Sample.name Class Abundance

3

<int> <dbl> <chr> <chr> <int>
1 1 0.5 1-S Actinobacteria 373871
2 1 0.5 1-S Cytophagia 8052
3 1 0.5 1-S Flavobacteriia 0
4 1 0.5 1-S Sphingobacteriia 0
5 1 0.5 1-S Nitrospira 0
6 1 0.5 1-S Planctomycetia 4553

Another approach, to accomplish the same thing, especially if the columns to ignore are not adjacent, is to
explicitly name the columns to ignore:
mine.long <- pivot_longer(data = mine.data,

cols = -c(Site, Depth, Sample.name),
names_to = "Class",
values_to = "Abundance")

To recap, at this point we read in the data and transformed it for easy use with heatmap tools:
Heatmap of mine pit microbe diversity
Jeff Oliver
jcoliver@email.arizona.edu
2017-06-05

Load dependancies
library("tidyr")

Read data and format for heatmap
mine.data <- read.csv(file = "data/mine-data.csv")
mine.long <- pivot_longer(data = mine.data,

cols = -c(1:3),
names_to = "Class",
values_to = "Abundance")

Now the data are ready - on to the plot!

Plotting heatmaps
The ggplot package

To plot a heatmap, we are going to use the ggplot2 package.
install.packages("ggplot2")

library("ggplot2")

For this plot, we are going to first create the heatmap object with the ggplot function, then print the plot.
We create the object by assigning the output of the ggplot call to the variable mine.heatmap, then entering
the name of this object to print it to the screen.
mine.heatmap <- ggplot(data = mine.long, mapping = aes(x = Sample.name,

y = Class,
fill = Abundance)) +

geom_tile() +
xlab(label = "Sample")

mine.heatmap

4

Actinobacteria

Alphaproteobacteria

Betaproteobacteria

Cytophagia

Deltaproteobacteria

Flavobacteriia

Gammaproteobacteria

Nitrospira

Planctomycetia

Sphingobacteriia

1−M 1−S 2−B 2−M 2−S 3−B 3−M 3−S
Sample

C
la

ss

0e+00

1e+05

2e+05

3e+05

4e+05

Abundance

Let’s dissect these commands:

• ggplot is the initial call, where we provide the following information:
– data is the data frame that contains the data we want to plot
– mapping tells ggplot what to plot where; that is, in this call, it says we want the Sample.name

column on the x-axis, the bacterial Class on the y-axis, and the shading, or fill, (the z-axis) to
reflect the value in the Abundance column.

• geom_tile, which is appended to ggplot with a plus sign (+), tells ggplot that we want a heatmap
• xlab provides a label to use for the x-axis

This command follows the commonly used syntax for creating ggplot objects, where an initial call to ggplot
sets up preliminary plotting information, and details are appended with plus signs:
Create plot object
plot.object.name <- ggplot(data, mapping) +

layer.one() +
layer.two() +
layer.three()

Draw plot
plot.object.name

Faceting a plot

The ggplot package includes a great way to visualize different categories of data. This approach, called
“faceting” requires one additional layer to the plotting command called facet_grid. With facet_grid we
indicate which column contains the categories we want to use for the plot:

5

mine.heatmap <- ggplot(data = mine.long, mapping = aes(x = Sample.name,
y = Class,
fill = Abundance)) +

geom_tile() +
xlab(label = "Sample") +
facet_grid(~ Depth)

mine.heatmap

0.5 3.5 25

1−M1−S2−B2−M2−S3−B3−M3−S1−M1−S2−B2−M2−S3−B3−M3−S1−M1−S2−B2−M2−S3−B3−M3−S

Actinobacteria

Alphaproteobacteria

Betaproteobacteria

Cytophagia

Deltaproteobacteria

Flavobacteriia

Gammaproteobacteria

Nitrospira

Planctomycetia

Sphingobacteriia

Sample

C
la

ss

0e+00

1e+05

2e+05

3e+05

4e+05

Abundance

But this leaves a bit to be desired. We only want columns displayed for which there are data, so we have to
add some additional information in our facet_grid call:
mine.heatmap <- ggplot(data = mine.long, mapping = aes(x = Sample.name,

y = Class,
fill = Abundance)) +

geom_tile() +
xlab(label = "Sample") +
facet_grid(~ Depth, scales = "free_x", space = "free_x")

mine.heatmap

6

0.5 3.5 25

1−S 2−S 3−S 1−M 2−M 3−M 2−B 3−B

Actinobacteria

Alphaproteobacteria

Betaproteobacteria

Cytophagia

Deltaproteobacteria

Flavobacteriia

Gammaproteobacteria

Nitrospira

Planctomycetia

Sphingobacteriia

Sample

C
la

ss

0e+00

1e+05

2e+05

3e+05

4e+05

Abundance

• Passing "free_x" to the scales argument instructs R to allow different x-axis for each of our sub-plots.
In this case, the default is for each site to appear in each sub-plot. Specifying scales = "free_x"
removes any site from a sub-plot where there is no corresponding data. That is, it removes sites 1-S,
2-S, and 3-S from the 3.5 and 25 depth sub-plots, removes 1-M, 2-M, and 3-M from the 0.5 and 25
depth sub-plots, and removes 2-B and 3-B from the 0.5 and 3.5 depth sub-plots.

• Passing "free_x" to space ensures that each column in the plot is the same width. Try it without
specifying the space argument to see the effect of this behavior.

While we are here, we can also move the boxes labelling each sub-plot (0.5, 3.5, and 25) from the top of the
plot to the bottom of the plot with the switch argument in the facet_grid() function:
mine.heatmap <- ggplot(data = mine.long, mapping = aes(x = Sample.name,

y = Class,
fill = Abundance)) +

geom_tile() +
xlab(label = "Sample") +
facet_grid(~ Depth, switch = "x", scales = "free_x", space = "free_x")

mine.heatmap

7

0.5 3.5 25

1−S 2−S 3−S 1−M 2−M 3−M 2−B 3−B

Actinobacteria

Alphaproteobacteria

Betaproteobacteria

Cytophagia

Deltaproteobacteria

Flavobacteriia

Gammaproteobacteria

Nitrospira

Planctomycetia

Sphingobacteriia

Sample

C
la

ss

0e+00

1e+05

2e+05

3e+05

4e+05

Abundance

That’s better. There is still some room for improvement, but we’ll get to that later.

Improving aesthetics

Scale

First let’s deal with a scaling issue. Most values are dark blue, but this is partly caused by the distribution of
values - there are a few really high values in the Abundance column. We can transform the data for display
by taking the square root of abundance and plotting that. To do this, we need to add another column to our
data frame and update our call to ggplot to reference this new column, Sqrt.abundance:
mine.long$Sqrt.abundance <- sqrt(mine.long$Abundance)
mine.heatmap <- ggplot(data = mine.long, mapping = aes(x = Sample.name,

y = Class,
fill = Sqrt.abundance)) +

geom_tile() +
xlab(label = "Sample") +
facet_grid(~ Depth, switch = "x", scales = "free_x", space = "free_x")

mine.heatmap

8

0.5 3.5 25

1−S 2−S 3−S 1−M 2−M 3−M 2−B 3−B

Actinobacteria

Alphaproteobacteria

Betaproteobacteria

Cytophagia

Deltaproteobacteria

Flavobacteriia

Gammaproteobacteria

Nitrospira

Planctomycetia

Sphingobacteriia

Sample

C
la

ss

0

200

400

600

Sqrt.abundance

Color

What if we want to use a different set of colors besides the default? For example, how can we change the
shading so low values are light and high values are dark? We change colours with scale_fill_gradient.
In this case we pass three objects to scale_fill_gradient: name is a label to use in the legend and low
and high are hex codes for color. In this case, we use white (#FFFFFF) for the low values and a dark blue
(#012345) for high values.
mine.long$Sqrt.abundance <- sqrt(mine.long$Abundance)
mine.heatmap <- ggplot(data = mine.long, mapping = aes(x = Sample.name,

y = Class,
fill = Sqrt.abundance)) +

geom_tile() +
xlab(label = "Sample") +
facet_grid(~ Depth, switch = "x", scales = "free_x", space = "free_x") +
scale_fill_gradient(name = "Sqrt(Abundance)",

low = "#FFFFFF",
high = "#012345")

mine.heatmap

9

0.5 3.5 25

1−S 2−S 3−S 1−M 2−M 3−M 2−B 3−B

Actinobacteria

Alphaproteobacteria

Betaproteobacteria

Cytophagia

Deltaproteobacteria

Flavobacteriia

Gammaproteobacteria

Nitrospira

Planctomycetia

Sphingobacteriia

Sample

C
la

ss

0

200

400

600

Sqrt(Abundance)

Theme elements

A number of elements of the plot are controlled through the theme function of ggplot. We can use this
function to alter axis titles and the placement of the facet titles. Remember the facets? We grouped the
graphs based on the depth of the samples. The graph currently shows the depth labels (the boxes with 0.5, 3.5,
or 25) between the graph and the sample name. We’d like to swap these positions, so the categories are shown
at the very bottom. While we’re at it, we should update the x-axis label, too. Setting strip.placement to
“outside” should accomplish this.
mine.long$Sqrt.abundance <- sqrt(mine.long$Abundance)
mine.heatmap <- ggplot(data = mine.long, mapping = aes(x = Sample.name,

y = Class,
fill = Sqrt.abundance)) +

geom_tile() +
xlab(label = "Depth (m)") +
facet_grid(~ Depth, switch = "x", scales = "free_x", space = "free_x") +
scale_fill_gradient(name = "Sqrt(Abundance)",

low = "#FFFFFF",
high = "#012345") +

theme(strip.placement = "outside")

mine.heatmap

10

0.5 3.5 25

1−S 2−S 3−S 1−M 2−M 3−M 2−B 3−B

Actinobacteria

Alphaproteobacteria

Betaproteobacteria

Cytophagia

Deltaproteobacteria

Flavobacteriia

Gammaproteobacteria

Nitrospira

Planctomycetia

Sphingobacteriia

Depth (m)

C
la

ss

0

200

400

600

Sqrt(Abundance)

Plot title

Plot titles can be added with ggtitle:
mine.long$Sqrt.abundance <- sqrt(mine.long$Abundance)
mine.heatmap <- ggplot(data = mine.long, mapping = aes(x = Sample.name,

y = Class,
fill = Sqrt.abundance)) +

geom_tile() +
xlab(label = "Depth (m)") +
facet_grid(~ Depth, switch = "x", scales = "free_x", space = "free_x") +
scale_fill_gradient(name = "Sqrt(Abundance)",

low = "#FFFFFF",
high = "#012345") +

theme(strip.placement = "outside") +
ggtitle(label = "Microbe Class Abundance")

mine.heatmap

11

0.5 3.5 25

1−S 2−S 3−S 1−M 2−M 3−M 2−B 3−B

Actinobacteria

Alphaproteobacteria

Betaproteobacteria

Cytophagia

Deltaproteobacteria

Flavobacteriia

Gammaproteobacteria

Nitrospira

Planctomycetia

Sphingobacteriia

Depth (m)

C
la

ss

0

200

400

600

Sqrt(Abundance)

Microbe Class Abundance

But by default the title is left-aligned. To center-justify the title, we add another argument, plot.title to
the theme call:
mine.long$Sqrt.abundance <- sqrt(mine.long$Abundance)
mine.heatmap <- ggplot(data = mine.long, mapping = aes(x = Sample.name,

y = Class,
fill = Sqrt.abundance)) +

geom_tile() +
xlab(label = "Depth (m)") +
facet_grid(~ Depth, switch = "x", scales = "free_x", space = "free_x") +
scale_fill_gradient(name = "Sqrt(Abundance)",

low = "#FFFFFF",
high = "#012345") +

theme(strip.placement = "outside",
plot.title = element_text(hjust = 0.5)) +

ggtitle(label = "Microbe Class Abundance")

mine.heatmap

12

0.5 3.5 25

1−S 2−S 3−S 1−M 2−M 3−M 2−B 3−B

Actinobacteria

Alphaproteobacteria

Betaproteobacteria

Cytophagia

Deltaproteobacteria

Flavobacteriia

Gammaproteobacteria

Nitrospira

Planctomycetia

Sphingobacteriia

Depth (m)

C
la

ss

0

200

400

600

Sqrt(Abundance)

Microbe Class Abundance

Miscellaneous Debris

There are a couple more things we will change in the plot:

1. Reverse the order of the y-axis, so ‘Actinobacteria’ is at the top
2. Remove the y-axis title
3. Change the colors of the boxes for the depth categories

The second two are done via the theme command, with the axis.title.y and strip.background arguments.
The first, though, requires consideration of how ggplot determines the order of the y-axis. When the axis
values are categories, ggplot treats them as factors and places them, from bottom to top, in the order of the
levels for the factor. Since we are using values in the Class column, take a look at the default order if the
column is treated as a factor:
levels(as.factor(mine.long$Class))

[1] "Actinobacteria" "Alphaproteobacteria" "Betaproteobacteria"
[4] "Cytophagia" "Deltaproteobacteria" "Flavobacteriia"
[7] "Gammaproteobacteria" "Nitrospira" "Planctomycetia"
[10] "Sphingobacteriia"

Since Actinobacteria is the first level, it appears at the bottom of the y-axis; the last level is Sphingobacteriia
and appears at the top of the plot. To reverse this order, we use scale_y_discrete and pass the factor
levels in reverse. What? Take another look at the output of the levels command. If we wanted to reverse
this output, we can use the rev function:
rev(levels(as.factor(mine.long$Class)))

[1] "Sphingobacteriia" "Planctomycetia" "Nitrospira"

13

[4] "Gammaproteobacteria" "Flavobacteriia" "Deltaproteobacteria"
[7] "Cytophagia" "Betaproteobacteria" "Alphaproteobacteria"
[10] "Actinobacteria"

Now we use the same command in scale_y_discrete for the limits argument:
mine.long$Sqrt.abundance <- sqrt(mine.long$Abundance)
mine.heatmap <- ggplot(data = mine.long, mapping = aes(x = Sample.name,

y = Class,
fill = Sqrt.abundance)) +

geom_tile() +
xlab(label = "Depth (m)") +
facet_grid(~ Depth, switch = "x", scales = "free_x", space = "free_x") +
scale_fill_gradient(name = "Sqrt(Abundance)",

low = "#FFFFFF",
high = "#012345") +

theme(strip.placement = "outside",
plot.title = element_text(hjust = 0.5)) +

ggtitle(label = "Microbe Class Abundance") +
scale_y_discrete(limits = rev(levels(as.factor(mine.long$Class))))

mine.heatmap

0.5 3.5 25

1−S 2−S 3−S 1−M 2−M 3−M 2−B 3−B

Sphingobacteriia

Planctomycetia

Nitrospira

Gammaproteobacteria

Flavobacteriia

Deltaproteobacteria

Cytophagia

Betaproteobacteria

Alphaproteobacteria

Actinobacteria

Depth (m)

C
la

ss

0

200

400

600

Sqrt(Abundance)

Microbe Class Abundance

And to adjust the y-axis and change the depth boxes, we add two more arguments to the theme command:
mine.long$Sqrt.abundance <- sqrt(mine.long$Abundance)
mine.heatmap <- ggplot(data = mine.long, mapping = aes(x = Sample.name,

y = Class,

14

fill = Sqrt.abundance)) +
geom_tile() +
xlab(label = "Depth (m)") +
facet_grid(~ Depth, switch = "x", scales = "free_x", space = "free_x") +
scale_fill_gradient(name = "Sqrt(Abundance)",

low = "#FFFFFF",
high = "#012345") +

theme(strip.placement = "outside",
plot.title = element_text(hjust = 0.5),
axis.title.y = element_blank(), # Remove y-axis title
strip.background = element_rect(fill = "#EEEEEE", color = "#FFFFFF")) +

ggtitle(label = "Microbe Class Abundance") +
scale_y_discrete(limits = rev(levels(as.factor(mine.long$Class))))

mine.heatmap

0.5 3.5 25

1−S 2−S 3−S 1−M 2−M 3−M 2−B 3−B

Sphingobacteriia

Planctomycetia

Nitrospira

Gammaproteobacteria

Flavobacteriia

Deltaproteobacteria

Cytophagia

Betaproteobacteria

Alphaproteobacteria

Actinobacteria

Depth (m)

0

200

400

600

Sqrt(Abundance)

Microbe Class Abundance

Finally, there are many default themes in ggplot that affect background colors, grid lines, and fonts. You can
see examples of them in use at https://ggplot2.tidyverse.org/reference/ggtheme.html. One relatively simple
theme is theme_bw, and we can apply it by adding the function to our ggplot object:
mine.long$Sqrt.abundance <- sqrt(mine.long$Abundance)
mine.heatmap <- ggplot(data = mine.long, mapping = aes(x = Sample.name,

y = Class,
fill = Sqrt.abundance)) +

geom_tile() +
xlab(label = "Depth (m)") +

15

https://ggplot2.tidyverse.org/reference/ggtheme.html

facet_grid(~ Depth, switch = "x", scales = "free_x", space = "free_x") +
scale_fill_gradient(name = "Sqrt(Abundance)",

low = "#FFFFFF",
high = "#012345") +

theme(strip.placement = "outside",
plot.title = element_text(hjust = 0.5),
axis.title.y = element_blank(),
strip.background = element_rect(fill = "#EEEEEE", color = "#FFFFFF")) +

ggtitle(label = "Microbe Class Abundance") +
scale_y_discrete(limits = rev(levels(as.factor(mine.long$Class)))) +
theme_bw() # Use the black and white theme

mine.heatmap

0.5 3.5 25

1−S 2−S 3−S 1−M 2−M 3−M 2−B 3−B

Sphingobacteriia

Planctomycetia

Nitrospira

Gammaproteobacteria

Flavobacteriia

Deltaproteobacteria

Cytophagia

Betaproteobacteria

Alphaproteobacteria

Actinobacteria

Depth (m)

C
la

ss

0

200

400

600

Sqrt(Abundance)

Microbe Class Abundance

Most notably, the different depth plots all have a black border around them. But if we take a closer look, a
number of our changes have been undone! The shading of the boxes indicating Depth is darker, the labels for
the samples are back at the bottom, and the y-axis title (“Class”) has returned.

Why did this happen? Didn’t we fix all of that with the call to theme?

This demonstrates the importance of order in building ggplot objects. When we use the function theme_bw,
we are using the settings in theme_bw for all theme elements. Thus by adding theme_bw after our call to
theme, we effectively throw out all those changes we made. In order for our changes to stay in place, we will
need to call theme_bw before our call to theme:
mine.long$Sqrt.abundance <- sqrt(mine.long$Abundance)
mine.heatmap <- ggplot(data = mine.long, mapping = aes(x = Sample.name,

16

y = Class,
fill = Sqrt.abundance)) +

geom_tile() +
xlab(label = "Depth (m)") +
facet_grid(~ Depth, switch = "x", scales = "free_x", space = "free_x") +
scale_fill_gradient(name = "Sqrt(Abundance)",

low = "#FFFFFF",
high = "#012345") +

theme_bw() +
theme(strip.placement = "outside",

plot.title = element_text(hjust = 0.5),
axis.title.y = element_blank(),
strip.background = element_rect(fill = "#EEEEEE", color = "#FFFFFF")) +

ggtitle(label = "Microbe Class Abundance") +
scale_y_discrete(limits = rev(levels(as.factor(mine.long$Class))))

mine.heatmap

0.5 3.5 25

1−S 2−S 3−S 1−M 2−M 3−M 2−B 3−B

Sphingobacteriia

Planctomycetia

Nitrospira

Gammaproteobacteria

Flavobacteriia

Deltaproteobacteria

Cytophagia

Betaproteobacteria

Alphaproteobacteria

Actinobacteria

Depth (m)

0

200

400

600

Sqrt(Abundance)

Microbe Class Abundance

Our final script for this heatmap is then:
Heatmap of mine pit microbe diversity
Jeff Oliver
jcoliver@email.arizona.edu
2017-06-05

rm(list = ls())

17

Load dependancies
library("tidyr")
library("ggplot2")

Read data and format for heatmap
mine.data <- read.csv(file = "data/mine-data.csv")
mine.long <- pivot_wider(data = mine.data,

cols = -c(1:3),
names_to = "Class",
values_to = "Abundance")

Transform abundance data for better visualization
mine.long$Sqrt.abundance <- sqrt(mine.long$Abundance)

Plot abundance
mine.heatmap <- ggplot(data = mine.long, mapping = aes(x = Sample.name,

y = Class,
fill = Sqrt.abundance)) +

geom_tile() +
xlab(label = "Depth (m)") +
Facet on depth and drop empty columns
facet_grid(~ Depth, switch = "x", scales = "free_x", space = "free_x") +
Set colors different from default
scale_fill_gradient(name = "Sqrt(Abundance)",

low = "#FFFFFF",
high = "#012345") +

theme_bw() +

theme(strip.placement = "outside", # Move depth boxes to bottom of plot
plot.title = element_text(hjust = 0.5), # Center-justify plot title
axis.title.y = element_blank(), # Remove y-axis title
strip.background = element_rect(fill = "#EEEEEE", color = "#FFFFFF")) +

ggtitle(label = "Microbe Class Abundance") +
scale_y_discrete(limits = rev(levels(as.factor(mine.long$Class))))

mine.heatmap

Additional resources
• Paper describing tidy data
• A great introduction to data tidying
• A cheat sheet for data wrangling
• Official documentation for ggplot
• A cheat sheet for ggplot
• Documentation for geom_bin2d, to create heatmaps for continuous x- and y-axes
• A PDF version of this lesson

Back to learn-r main page

Questions? e-mail me at jcoliver@email.arizona.edu.

18

https://www.jstatsoft.org/article/view/v059i10
http://garrettgman.github.io/tidying/
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
http://ggplot2.tidyverse.org/reference/
https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf
http://ggplot2.tidyverse.org/reference/geom_bin2d.html
https://jcoliver.github.io/learn-r/006-heatmaps.pdf

	Heatmaps & data wrangling
	Getting started
	Data Wrangling
	Plotting heatmaps
	The ggplot package
	Faceting a plot
	Improving aesthetics

	Additional resources

