
Dynamic reports with knitr
Jeff Oliver

2024-05-23

An introduction to using the knitr package in R to produce reproducible, dynamic reports.

Learning objectives

1. Install and use third-party packages for R
2. Become familar with R Markdown syntax
3. Write dynamic reports including code and visualizations

Literate programming

What if there was a way to include text and all the code we used for our analyses in a single
document? What about a report that includes not only data visualization, but the actual
code used to produce those visualizations? With literate programming, we write text and
code in a single document - this way, we can update reports and manuscripts with new data
or corrections with minimal effort.

Getting started

To create these reports, we will make heavy use of the knitr package for R. So if you have
not already installed it, run this command in your R console:

install.packages("knitr")

To make these reports, which are ultimately output in HTML, PDF, or Word format, we use
a text format called R Markdown. The concept is to use pure text to indicate formatting like
bold, italics, and superscripts, and to combine this formatting with code that can be executed

1

and output displayed. More on how we do that later. For now, let’s start by creating a new
R Markdown file via File > New File > R Markdown… You should then be prompted with a
window like:

For the title, enter “knitr lesson” and add your name to the author field. Leave the default
output format as HTML.

At the top of the file is the header section, which includes basic information about your
document. The only field that is absolutely required is the output field, but it is best to
include the title, author, and date information, too. Note that immediately below this header
is a chunk of code:

Followed by text:

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for
authoring HTML, PDF, and MS Word documents. For more details on using R

2

Markdown see <http://rmarkdown.rstudio.com>.

We will start with formatting in R Markdown syntax, followed by how to include R code in
your document.

R Markdown

To try out these formatting examples, start by deleting everything after the header section, so
your document only includes:

title: "Knitr lesson"
author: "Jeff Oliver"
date: "April 27, 2017"
output: html_document

Below the header, add this text to your file:

Introduction to knitr

This is my first knitr document.

Bulleted lists

+ Regular font
+ **bold font**
+ _italic font_

Numbered lists

1. one
2. two
2. three

And the output file is created when we press the Knit button in the top-left part of the screen
(or by pressing Shift-Ctrl-K or Shift-Cmd-K):

3

Knitr lesson

Jeff Oliver

April 27, 2017

Introduction to knitr

This is my first knitr document.

Bulleted lists

• Regular font
• bold font
• italic font

Numbered lists

1. one
2. two
3. three

Notice the large font of “Introduction to knitr”. Because we used a single pound sign (#) at
the start of the line, this text is formated as a level 1 header. To format lower headers, we
add pound signs:

header 1
header 2
header 3
header 4

Which are rendered as:

4

header 1

header 2

header 3

header 4

We can also add hyperlinks to our document, using this syntax: [text we want to
link](url address). So to create a link to the University of Arizona homepage, we write
[University of Arizona](http://www.arizona.edu). When we run Knit, this is displayed
in our document as University of Arizona.

Images are also supported, whether they are local files or images on the web. The syntax is
almost identical to that for hyperlinks, but in the case of images, we prefix the statement with
an exclamation point (!): ![Caption for image](filename)

Here I use an image that I downloaded from Wikimedia into the folder “images” and include
a caption:

![The white rhinoceros (_Ceratotherium simum_) (photo by Rob
Hooft)](images/640px-Rhinoceros_male_2003.jpg)

Subscripts and superscripts are also supported by wrapping the font in tildes (~) and carets
(^), respectively:

Subscript: log~10~
Superscript: r^2^

Subscript: log10 Superscript: r2

5

http://www.arizona.edu
https://commons.wikimedia.org

Now what happened there? Why aren’t those two on separate lines? When the R Markdown
file is interpreted, it assumes adjascent lines should all be part of the same paragraph, unless
you indicate otherwise. The way we do this is by adding two blank spaces at the end of a line
to indicate a paragraph break:

Subscript: log~10~ <!-- Two spaces at end of line -->
Superscript: r^2^

Subscript: log10
Superscript: r2

And the last thing to mention about formatting is that if you want to include equations,
you can use LaTeX syntax, surrounded by dollar signs ($). Use single dollar signs for in-line
equations, $E = mc^2$ is rendered as 𝐸 = 𝑚𝑐2. Equations in double dollar signs are displayed
on their own line, so $$E = mc^2$$ shows up as

𝐸 = 𝑚𝑐2

You can also write more complex equations, too (remembering to bracket your LaTeX code
with double dollar signs):

$$
\begin{aligned}
\begin{array}{l}
\displaystyle \int 1 = x + C\\
\displaystyle \int x = \frac{x^2}{2} + C \\
\displaystyle \int x^2 = \frac{x^3}{3} + C
\end{array}
\end{aligned}
$$

∫ 1 = 𝑥 + 𝐶

∫ 𝑥 = 𝑥2

2 + 𝐶

∫ 𝑥2 = 𝑥3

3 + 𝐶

6

http://www.latex-project.org/

What about code?

The best part of knitr is the ability to include code and the output of that code. Let’s start
by making a new R Markdown file via File > New File > R Markdown… and give it the title
“Iris shape analyses”. If the author field is blank, add your name to the author field.

title: "Iris shape analyses"
author: "Jeff Oliver"
date: "April 27, 2017"
output: html_document

Start with a brief description of what this report is about:

Introduction
In this report we test for a relationship between different parts of morphology
in _Iris_ flowers.

Introduction

In this report we test for a relationship between different parts of morphology in
Iris flowers.

Next we can add information about the data we will be using; in this case it is the built-in
iris dataset. Add this to your R Markdown file:

Materials & methods
Analyses are based on built-in data for three _Iris_ species. We used linear
regression to test for relationships.

Materials & methods

Analyses are based on built-in data for three Iris species. We used linear regression
to test for relationships.

Now let’s actually do some R. We start by plotting the relationship between petal width and
petal length. To write an R code block, we use triple-backticks (```) and braces to indicate the
language (R in our case, but other languages such as python and bash can also be supported).
Here we add code to indicate the start of the Results section, as well as a plot of the two
variables:

7

Results

```{r}
plot(x = iris$Petal.Length,

y = iris$Petal.Width,
xlab = "Petal length (cm)",
ylab = "Petal width (cm)")

```

When we knit our document, the above code is rendered as:

Results

plot(x = iris$Petal.Length,
y = iris$Petal.Width,
xlab = "Petal length (cm)",
ylab = "Petal width (cm)")

1 2 3 4 5 6 7

0.
5

1.
5

2.
5

Petal length (cm)

P
et

al
 w

id
th

 (
cm

)

8

We can also do analyses, and reference the output with in-line code. For this example, let’s
find the correlation coefficient (r2) for the relationship between petal width and petal length.
We can then reference this in the text of our report.

The R code for a linear model is:

```{r echo = FALSE}
iris_model <- lm(Petal.Width ~ Petal.Length, data = iris)
iris_model_summary <- summary(iris_model)
r_squared <- iris_model_summary$r.squared
```

Note for this purpose, we added the qualifier echo = FALSE which tells knitr not to include
the actual code in the output. Even though the code runs, and because this code produces no
output, we won’t really see any changes to our document. Save and Knit the document to see
this for yourself.

You can also control code chunks in a number of other ways:

• eval = FALSE to show code but not to execute it
• results = "hide" to suppress any results from being included in output
• warning = FALSE and message = FALSE to suppress warnings and messages, respec-

tively, from being shown

Even though we set echo = FALSE, the code is still executed and we can reference products
of that code through in-line code chunks. In this case, we want to reference the value stored
in our r_squared variable in our document text. We use in-line code to do so. In-line code
is wrapped in single backticks (‘) and we skip the braces, as opposed to triple backticks and
braces we used for separate code blocks. So we add this to our Results section:

Petal width and petal length were highly correlated (r^2^ = `r r_squared`).

Petal width and petal length were highly correlated (r2 = 0.9271098).

Hmmm…maybe we don’t need r2 to seven digits, so update the code to only include two digits
(using R’s round() function):

Petal width and petal length were highly correlated (r^2^ = `r round(r_squared, 2)`).

Petal width and petal length were highly correlated (r2 = 0.93).

9

We can also include tables in our report, either by creating them manually or by using the
kable() function of knitr. In this lesson, I will just show the manual creation, and leave it
to you to look into the kable() function later (see #Additional-resources below for a link to
learn more about kable()).

We use pipes (|) and minus signs (-) to create tables; we generally start with a header row,
followed by a separator row of minus signs, then add rows of data:

Column 1	Column 2
Row 1 data	Row 1 data
Row 2 data	Row 1 data
Row 3 data	Row 1 data

Which will show up in your report as:

Column 1 Column 2
Row 1 data Row 1 data
Row 2 data Row 1 data
Row 3 data Row 1 data

Let’s add one more thing to this report. Since these data were were collected by the botanist
Edgar Anderson, let’s provide a link to the Wikipedia page with information about the data
set. So go back to the Materials & Methods section and update it with a link:

Change:

Analyses are based on built-in data for three _Iris_ species. We used linear
regression to test for relationships.

To:

Analyses are based on data for three _Iris_ species collected by
[Edgar Anderson](https://en.wikipedia.org/wiki/Iris_flower_data_set). We used
linear regression to test for relationships.

And the markdown for the Materials & methods sections will be rendered as:

10

Materials & methods

Analyses are based on data for three Iris species collected by Edgar Anderson. We
used linear regression to test for relationships.

Our R Markdown file should look like this:

title: "Iris shape analyses"
author: "Jeff Oliver"
date: "April 27, 2017"
output: html_document

Introduction
In this report we test for a relationship between different parts of morphology
in _Iris_ flowers.

Materials & methods
Analyses are based on data for three _Iris_ species collected by
[Edgar Anderson](https://en.wikipedia.org/wiki/Iris_flower_data_set). We
used linear regression to test for relationships.

Results

```{r}
plot(x = iris$Petal.Length,

y = iris$Petal.Width,
xlab = "Petal length (cm)",
ylab = "Petal width (cm)")

```

```{r echo = FALSE}
iris_model <- lm(Petal.Width ~ Petal.Length, data = iris)
iris_model_summary <- summary(iris_model)
r_squared <- iris_model_summary$r_squared
```

Petal width and petal length were highly correlated (r^2^ = `r round(r_squared, 2)`).

Which produces the following, albeit short, report:

11

https://en.wikipedia.org/wiki/Iris_flower_data_set

Iris shape analyses

Jeff Oliver

April 27, 2017

Introduction

In this report we test for a relationship between different parts of morphology in
Iris flowers.

Materials & methods

Analyses are based on data for three Iris species collected by Edgar Anderson. We
used linear regression to test for relationships.

Results

plot(x = iris$Petal.Length,
y = iris$Petal.Width,
xlab = "Petal length (cm)",
ylab = "Petal width (cm)")

12

https://en.wikipedia.org/wiki/Iris_flower_data_set

1 2 3 4 5 6 7

0.
5

1.
5

2.
5

Petal length (cm)

P
et

al
 w

id
th

 (
cm

)

Petal width and petal length were highly correlated (r2 = 0.93).

There is a lot more one can do with R Markdown. Check out the additional resources listed
below for more information.

Other formats

These HTML reports are great (as a matter of fact, all these lessons are written in R Markdown
and converted to HTML with the knitr package), but what about other formats? The other
two commonly used formats are documents for word processing (i.e. Word .doc files) and PDF
files. These other formats require additional software to be installed on your machine:

• For Word documents, you will need Word or another piece of software that can interpret
.docx files (e.g. LibreOffice or OpenOffice).

– If you want the resulting document to have styles other than the default styles
produced by knitr, first create a .docx file with the styles you want to apply to
your output document, then refer to that file in the header (see example below and
links in Additional resources).

• For PDF documents, the requirement is dependent on your operating system:

13

– Windows: Tex for Windows
– Mac OS X: Tex for Mac
– Linux/Unix: Most likely you will need pandoc; if you try to Knit an R Markdown file

into a PDF and get error messages, they should indicate which additional software
may be necessary.

To change the output format, you can update the header information, changing the value of
the output field from html_document to word_document or pdf_document. You can also use
the triangle next to the Knit button to open a drop-down menu and select the format you
want.

A Word document header:

title: "Iris shape analyses"
author: "Jeff Oliver"
date: "April 27, 2017"
output:

word_document:
reference_docx: docs/word-template.docx

A PDF document header:

title: "Iris shape analyses"
author: "Jeff Oliver"
date: "April 27, 2017"
output: pdf_document

Additional resources

• knitr documentation
• R Markdown documentation
• An awesome cookbook of R Markdown solutions
• The documentation for the knitr() function
• Creating Word templates to apply to knitr documents
• A handy cheatsheet for R Markdown syntax

14

http://miktex.org/2.9/setup
http://tug.org/mactex
http://pandoc.org/installing.html
https://yihui.name/knitr/
http://rmarkdown.rstudio.com/
https://holtzy.github.io/Pimp-my-rmd/
https://bookdown.org/yihui/rmarkdown-cookbook/kable.html
http://rmarkdown.rstudio.com/articles_docx.html
http://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf

• Guide to writing bibliography sections in R Markdown documents
• Software Carpentry’s knitr lesson
• A PDF version of this lesson

15

http://rmarkdown.rstudio.com/authoring_bibliographies_and_citations.html
http://swcarpentry.github.io/r-novice-gapminder/15-knitr-markdown/
https://jcoliver.github.io/learn-r/005-intro-knitr.pdf

	Literate programming
	Getting started
	R Markdown
	Knitr lesson
	Introduction to knitr
	header 1
	header 2
	header 3

	What about code?
	Introduction
	Materials & methods
	Results
	Materials & methods

	Iris shape analyses
	Introduction
	Materials & methods
	Results
	Other formats
	Additional resources

